Aluminum Crack Repair

Without Welding

Topics

- Crack detection/inspection
- Metal stitching
- Threaded hole repair

Crack Detection

- Visual
- Pressure testing
- Dye-penetrant

Visual

- Practiced by many as the only way of finding cracks.
- You wouldn't inspect cast iron this way.
- Inconclusive.
- You cannot find the ends of the crack.

After Dye-Penetrant Inspection

Pressure Testing

- Only shows cracks that leak.
- Helps determine the extent of the repair needed.
- Must be done following any repair.

Dye-Penetrant

Cleaner

- Do not use to clean the test area.
- Do not spray directly on the test area.
- Spray only on a dry shop towel or other clean cloth.

Penetrant

- Use small amount.
- Can be applied with a brush.
- Messy, difficult to remove.
- You must wipe as much as possible off before applying the developer.

Applying Penetrant With a Brush

Developer

- Test area must be wiped clean of penetrant by applying cleaner to the cloth before applying developer.
- Apply developer as dry as possible. Use compressed air to speed drying process.

Step by step procedure

Step by step procedure

Wait 5 minutes

Apply cleaner to clean cloth

Wipe off all visible penetrant

Keep cleaning until all penetrant is gone

Spray on developer very dry

Use compressed air to accelerate drying

Wait 1 minute before inspecting

Metal Stitching or Cold Repair

Objective

Stop leaks
Prevent crack propagation
Structural integrity
Prevent seats from coming out
Remove the crack for cosmetic reasons
\$\$\$

Two Types of Stitching Pins

Standard Threaded Pins

- Straight thread L Series pins
- Seal by interference fit of the threads
- Exert spreading pressure
- For sealing, seat retention and crack removal

CASTMASTER Threaded Pins

- Spiralhook threads
- Radial drawing force creates structural integrity
- Not used for seat retention
- Seal leaks
- Prevent crack propagation

Working With Aluminum

- Requires cutting fluid for drilling and tapping.
- Galls easily.
- Cuts easier than cast iron.
- Very easy to oversize and egg-shape drilled holes.
- Aluminum stitching pins are required in combustion chambers of cylinder heads.
- Steel pins can be used for structural repairs.

Cylinder Heads

- Many cracks can be repaired without removing the seat inserts by using L Series pins.
- Do not drill into water if the crack does not leak.
- When the crack does leak you must install pins under and behind the seat to stop the leak.

Cylinder Heads

- Only when the crack goes between two seats can you use a steel pin.
- Cracks on the top side and between cylinders on the deck surface require CASTMASTER pins for structural integrity.

Ford Escort cylinder head

Crack over exhaust port

Install C1 CASTMASTER stitching pin

Install L Series pin intersecting the seat insert

Install L Series pin into the floor of the water hole

Finished repair

Stitching Pin Selection

- Most aluminum cyl heads have fairly thin walls so you should use L4 pins that have very fine threads.
- The fine threads also work well when tapping into the hard seat insert.
- L4 pins will fit in between the seats in most cases.
- Larger diameter pins are used when the casting is thicker.

Structural Repair Using CASTMASTER Stitching Pins

Inspection

Drill the first hole

Spotface the hole

Apply tapping fluid

Tap the hole

Apply thread sealant

Install a C1A aluminum CASTMASTER stitching pin

The head of the pin twists off when tight

Grind off excess shoulder close to flush

Drill so that pins slightly overlap

Continue installing pins until the crack is removed

Grind pins flush and peen lightly with a needle scaler

Completed Repair

Pressure test to 40 PSI

Advantages Over Welding

- Faster
- Very cost effective
- No distortion
- Will not anneal the surrounding aluminum

Advantages of Welding Over Stitching

- Welding can repair erosion and electrolysis damage.
- Welding can add reinforcement by adding material to weak areas such as around head bolt holes.
- Welding can replace missing pieces.
- Welding can build up bearing bores.

Other Aluminum Castings That Can Be Repaired by Stitching

✓ Aluminum oil pans for Cummins, Cat and other diesel engines

- ✓ Water cooled marine manifolds
- ✓ Bell housings and transmission cases
- Engine blocks and intake manifold

LOCK-N-STITCH Inc. 1015 S. Soderquist Rd Turlock, CA 95380 800-736-8261 209-632-2345 <u>www.locknstitch.com</u> Email for technical support *gary@locknstitch.com*

LOCK-N-STITCH

R